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I. Definitions 

 

Throughout the literature concerned with ultrasonic transducers and their characteristics, 

a variety of notations and symbols has been used. What follows is an attempt to provide a 

useful set of definitions and a consistent set of notation. Where possible, notation has 

been selected that is used most frequently in technical literature. 

 

Transducer: A device that is capable of converting one for of energy into another form. In 

the case of ultrasonic transducers, electrical energy is converted to mechanical (sound) 

energy and vice versa. 

 

Transducer assembly: A mechanical assembly containing the transducer or transducers, 

that provides protection, damping, electrical matching, and connections, all in a package 

that is physically convenient to handle. Informally, ultrasonic transducer assemblies used 

in NDT are usually referred to simply as “transducers”. 

 

Velocity of sound: Refers to the speed at which sound waves travel through a 

transmissive material. The velocity of sound depends on the material and the mode of 

wave propagation. To a lesser extent the velocity of sound will depend on temperature, 

and the processing history of the material. Sound velocity is usually expressed in meters 

per second or incher per microsecond. The notation for sound velocity is c. 

 

Mode of sound propagation: Sound waves can travel in solids in a variety of ways, 

usually called modes of propagation. The two most common modes are longitudinal and 

shear waves. Surface (Rayleigh) and plate (Lamb) wave modes are also important in 

some flaw detection techniques. Liquids and gasses transmit only longitudinal waves. 
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Frequency: The number of oscillations per second of the wave produced by a transducer. 

In ultrasonic testing, frequency is commonly used to describe the nominal or design 

center frequency of a transducer. Frequency is usually expressed in Megahertz (MHz) 

and the notation for frequency is f. 

 

Wavelength: The distance a sound wave travels in one period (τ) in a given material. The 

notation for wavelength is λ . 

    τ  =  1/f    (1) 

    λ  =  c τ    (2) 

    λ  =  c/f    (3) 

 

Bandwidth: The operating frequency range of a transducer assembly is its bandwidth. For 

pulse/echo transducers (see Figure 1), it is defined as the difference between the upper 

(fu) and lower (fl) frequencies at which the pulse/echo signal amplitude is 6 dB down 

from the frequency at which maximum signal amplitude occurs. Bandwidth is an 

important characteristic of ultrasonic transducer assembles. It is usually measured from 

the amplitude versus frequency spectrum using a spectrum analysis software. The 

apparent bandwidth and details of the spectral response of a transducer assembly are 

dramatically influenced by the electrical characteristics of the pulser/receiver, cable type 

and length, electrical matching, target shape, and the attenuation characteristics of the test 

material. 

 

  Bandwidth  =  fu  -  fl     (4) 

 

  Percent bandwidth  =  
c

lu

f

ff −
  x  100%            (5) 

 

 
 

Figure 1 – Typical frequency response spectrum of pulse-echo transducer 

 

Center frequency: Used in the above bandwidth calculation, is defined as  

 

Center frequency  =  fc  = 
2

ff lu +
   (6) 

Note that center frequency may not be the frequency at which maximum pulse/echo 

signal amplitude occurs. 



Peak Frequency: Is defined as the frequency at which maximum pulse/echo signal 

amplitude occurs. Its notation is fp. See Figure 1. 

 

Decibel (dB): The unit used to express the ratio of one amplitude or power level relative 

to another. In ultrasonic NDT, this is usually the ratio of echo amplitudes. 

 

For signal amplitudes measured in volts: 

 

  dB = 20 log10 (V1 / V2)    (7) 

For power measured in watts: 

 

  dB = 10 log10 (W1 / W2)    (8) 

 

Near Field (Fresnel Zone) : The part of the sound field between the transmitting surface 

of the transducer assembly and the point on the acoustic axis where the past pulse/echo 

maximum occurs is called the near field. The point at which the last pulse/echo maximum 

occurs is sometimes designated as the Y0+ point. We will define this distance as N. The 

following relationships hold exactly only for long pulse or continuous wave excitation. 

Note also that the equations are for single frequency sources, while ultrasonic transducers 

used in NDT typically generate energy across a spectrum of frequencies. 

(a) For a circular disk transducer: 

 

N  =  r
2 

/ λ   -  λ / 4        where r = radius of the disk   (9) 

 

Most texts simply use N  =  r
2 

/ λ  and ignore the  λ/4 term. For most cases, where 

transducer radius is large with respect to wavelength, this is satisfactory. However, as 

Rose 
(1)

 points out, results can be misleading for small diameter, low frequency 

transducers operating into high velocity materials such as steel. 

 

Equation 9 can be rewritten as  
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   where D is the diameter of the element. (10) 

  

The percent error in N calculated from r
2 

/ λ   is then (λ/D)
2
  x 100%. Therefore, a D/ λ  = 

10 produces a 1% error in N while a  D/ λ  = 5 gives an error of 4% and for D/ λ  = 2 the 

error is 25%. In other words, for  D/ λ  = 2,  N is actually 25% shorter than the value 

calculated by r
2 

/ λ . 

 

(b) For a square transducer: 

 

 N = 
λ4

A42.1 2

     where A is the length of a side of the square  (11) 

  



Far Field (Fraunhofer Zone): The far field is the region beyond the near field where beam 

spreading occurs and the pulse/echo signal amplitude from small on-axis reflectors 

diminishes as 1 / Z
2  

where Z is the distance from the radiating surface of the transducer 

assembly. 

 

Beam Spread Angle: The angle of divergence of the main lobe of the sound field, as seen 

in Figure 2 below. The notation for the beam spread angle is α, and the angle is measured 

between the acoustic axis at a point in the far field and the point moving in the transverse 

direction where the acoustic pressure first reaches a specified minimum (commonly -6 dB 

from peak). It is the angle at which exact phase cancellation occurs in the far field at a 

single operating frequency. The beam spread angle in pulse/echo mode is commonly 

calculated as follows: 

 

 Sin (α/2)  =  .514c / fD 

 

 where  α/2 = half angle spread between -6 dB points 

  c  = sound velocity in the test medium 

  f  =  frequency 

  D = transducer diameter 

 

Which can also be expressed as  

 

 Sin (α/2)  =  .514λ / D  

 

Figure 2 shows a generalized representation of this concept 

  
 

Figure 2 – Beam Spread Angle 

 

 

The -20 dB beam spread angle can be similarly calculated from the formula 

 

 Sin (α/2)  =  .870c / fD 

 

In the case of typical disk transducers, if sound pressure in the far field was measured 

with a small hydrophone in a 180 degree semicircle at a fixed distance from the 

transducer, a series of minima followed by maxima of decreasing amplitude would be 

observed.  Figure 3 shows two representations of a typical result, in linear and polar plots. 



 
Hydrophone output versus angle Polar plot of graph at left 

 

Figure 3 – Two representations of lobe structure of single frequency sound field 

produced by a circular disk transducer 

 

For circular disk transducers, the angular positions of the minima are given by 

 

 Sin θn  =  (1.22 + n – 1) (λ / D)    n = 1, 2, 3 …  (13) 

 

For a square transducer, the angular positions of the minima are given by 

 

 Sin θn  =  nλ / A  where A = side dimension of the square (14) 

 

Note that in ultrasonic testing, transducers are most commonly excited by short pulses 

containing a spectrum of frequencies rather than a single frequency. Depending on the 

bandwidth of the radiated pulse, the lobe structure of the sound field will be more or less 

obliterated. For broadband pulses, the values of n can be used to determine the angles at 

which the sound pressure as measured with a hydrophone has dropped by approximately 

10 dB, 20 dB, 25 dB, and 30 dB for n = 1, 2, 3, and 4 respectively.
(3)

 In pulse/echo, this 

would suggest a 20 dB decrease in amplitude at the first minimum. 

 

 

 

II. Sound Fields of Flat Circular Disk Transducers 

 

 

A. Single Frequency Operation 

 

The sound field produced by a flat circular transducer driven at a single frequency has 

been discussed by several authors.
(3, 4, 5, 6) 

In most cases approximations have been used to 

simplify the analysis. A rigorous treatment of the baffled piston reflector containing no 

approximations is provided by Goodman.
(8)

 The pressure field is then: 
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where u0  =  the maximum velocity at the radiating surface 



 ρ  =   the density of the transmitting material 

 k  =   2π / λ 

 
→

r  =   position vector of the sound field point 

  r’  =   magnitude of the vector from the radiating surface to the field point 

 f   =   frequency 

 θ  =   angle between the sound field axis and the vector from the radiating 

    surface to the sound field point 

dS  =  the surface integral 

 i   =  1−   

 

At sound field distances significantly greater than one wavelength and for field points not 

too far off the center axis, equation 15 reduces to the usual Rayleigh integral:  
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For on-axis calculations, the Rayleigh integral can be solved analytically; the complex 

expression (equation 15) can also be solved analytically on the axis, but off-axis points 

require numerical integration. For on-axis, the complete expression for sound pressure is: 

 

 P(z)  =  ρ u0 cz 
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    (17) 

 

where   c  =  the velocity of sound in the material 

 a  =  the radius of the transducer element 

 z  =  the distance between the transducer and the on-axis point 

 

The on-axis pulse/echo response with CW or long pulse excitation is: 
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Equation 15 gives the proper behavior for the pressure field at all locations; at large 

distances it reproduces the well-verified results of the Rayleigh integral. At closer 

distances it gives the proper flattening of the transverse profile, and extremely close to 

the transducer face it approaches both numerically and in the mathematical limit a 

pressure equal to (ρ u0 c), as the boundary conditions say it should. 

 

When evaluated with the Rayleigh integral, the on-axis pressure oscillates with constant 

amplitude. The locations of the maxima are given by Posakony
(9)

 as: 

 



 Zmax(n)  =  
( )1n24

)1N2(a4 222

+λ

+λ−
       n =  0, 1, 2 …  (19) 

Zmin(n)  =  
λ

λ−

n2

na 222

       n  =  1, 2, 3 …   (20) 

 

Equations 19 and 20 can be combined to give the exact locations of the on-axis maxima 

and minima as: 

 

 Zmax = n  odd, min = n  even  =  
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where n cannot exceed a value that would produce a negative result. 

 

Equation 18 has been evaluated for the points of Zmax and Zmin that given by equation 21 

for two values of D/λ, D/λ = 10 and D/λ = 50. The results are shown graphically in Figure 

4a. Note however that for D/λ = 10 the characteristic maxima and minima are moved 

towards the transducer when plotted against the Seki parameter S = Z/N and, contrary to 

most published literature, the magnitude of the maxima diminishes with each maximum 

as the transducer is approached. This effect still prevails even at D/λ = 50 for smaller 

fractional values of near field length N. An isometric view of the pulse/echo transverse 

beam profile for D/λ = 10 calculated from equation 15 is shown in Figure 4b. 

     
 

Figure 4a – Normalized axial pulse/echo response for circular disk transducer,  

D/λ = 10 and D/λ = 50 

 
 



  
 

Figure 4b – Isometric view of normalized transverse pulse/echo response versus 

axial position for a circular disk transducer with D/λ = 10  
 

 

The sound field is generally described as being divided into zones, the near field or 

Fresnel zone where interference effects occur, and the far field or Fraunhoffer zone where 

interference effects are absent. For n = 1, equation 21 reduces to 

 

 Zmax  = N  =  a
2 

/ λ   -  λ/4 

 

This is the point at which the last on-axis pulse/echo maximum occurs.    

 

The pulse/echo response in the near field of transducers with D/ λ  >> 10 is characterized 

by a series of on-axis maxima and minima. From equation 21 for D/ λ  >> 10, points of 

on-axis maxima occur at N and at the odd fractional distances of N/3, N/5, N/7, etc. The 

on-axis pulse/echo response is minimized at even fractional distances of N/2, N/4, etc. 

McMaster
(6)  

is frequently quoted and uses a Y notation for these sound field landmarks 

as follows: 

 

 N  =  r
2 

/ λ      ------ Y0
+ 

 (“Y plus zero”) 

  

 N/2   ---------------- Y1
- 

 

 N/3   ---------------- Y1
+ 

 

 N/4   ---------------- Y2
-
 

 

 N/5   --------------- Y2
+
 etc. 

 

Because the transverse and axial pressure profiles vary greatly in the near field zone, 

quantitative flaw detection in this region is difficult with narrowband transducers. Many 

experts advise against using this portion of the sound field for flaw detection, although 

time domain tests such as thickness gaging or velocity measurement are generally 

unaffected. 



In the far field, the on-axis sound pressure drops to zero with increasing distance, with 

pressure decreasing as 1/Z. For long pulsed CW excitation, the pulse/echo signal 

amplitude from a small on-axis reflector is proportional to intensity and drops to zero 

inversely with the square of distance, 1/Z
2
. The sound pressure also drops approximately 

in a Gaussian fashion in the transverse direction. However side lobes may be present, 

causing pressure maxima in the transverse direction, although these maxima will be 

lower in amplitude than the main lobe. The number and angular position of the side lobes, 

if present, are determined by transducer bandwidth and also by the ratio D/λ as described 

above. 

 

Sound field characteristics can be measured experimentally using either pulse/echo 

measurements from a small ball reflector or by using a small hydrophone. The ball 

diameter should be less than or equal to ten wavelengths in order to approximate a point 

reflector. A hydrophone should be less than or equal to one-half wavelength in diameter. 

Either method can be used to survey sound fields, however the pulse/echo procedure is 

much more commonly used for evaluating transducers designed for nondestructive 

testing applications. The relative changes in signal amplitude measured by a hydrophone 

used to survey the transmitted sound field will be twice as large on a dB scale as the 

pulse/echo signal received from a ball target surveying the reflected sound field. In other 

words, a 0.707 fractional amplitude change (3 dB) measured with a small hydrophone is 

the equivalent of a 0.5 fractional change (6 dB) in a pulse/echo response at the same point 

in the sound field. 

 

The preceding discussion has been limited to the characteristics of the sound fields 

produced by circular disk transducers operating at a single frequency, i.e. with continuous 

wave excitation. Transducer assemblies used for ultrasonic flaw detection and thickness 

gaging are typically designed to produce short direction pulses, which are necessary in 

order to achieve good near surface resolution. However, by definition, a short duration 

pulse contains a band of frequencies around the center frequency. The bandwidth of 

transducers commonly used for NDT applications ranges from about 20% to greater than 

100%. Although the transducer bandwidth as well as other factors can modify the sound 

fields produced by single frequency operation, it is useful to understand the features of 

the single frequency sound field as a frame of reference. 

 

B. Effects of Bandwidth 

 

When a broadband transducer assembly is pulsed with a short duration electrical impulse, 

a band of frequencies is produced, and the resulting waveform is short in duration. At 

each coordinate point in the sound field of the transducer, the amplitude can be quantified 

by any of four measures: the peak positive half-cycle amplitude, the peak negative half-

cycle amplitude, peak-to peak amplitude, or the peak rectified amplitude. This must be 

specified when discussing the pressure field or more appropriately the response map of a 

pulsed transducer. 

 

To calculate the pressure field of a pulsed transducer, one must include all of the 

frequency components, each weighted according to the transducer’s spectrum. The time 



varied pressure detected by a point hydrophone and in pulse/echo reflection of a point 

reflector are given by: 

 

Phydrophone (r, t)  =  ∫
∞

∞−

β(ω) P0 (r, ω) e
iωt

 d ω    (22)  

 

Ppulse/echo (r, t)  =  ∫
∞

∞−

[β(ω) P0 (r, ω)]
2
 e

iωt
 d ω    (23)  

 

where β(ω) is the impulse response pulse spectrum (single transduction), P0 (r, ω) is the 

CW pressure contribution at the field point, and the rest of the expression represents the 

inverse Fourier transform from frequency domain to time domain. 

 

An important feature of equations 22 and 23 is that the pulse/echo response map cannot 

be calculated by merely squaring the hydrophone response map. This is distinctly 

different from the CW case where the pulse/echo response is identical to the sound 

intensity distribution (the CW pressure squared). 

 

Most flaw detector users customarily work with the peak of a full-wave rectified 

waveform. Figure 5a shows the on-axis pulse/echo bandwidth of a transducer with  

D/λ0 = 10 and pulse/echo bandwidths of 20%, 40%, 60%, and 80%. 

    
 

 

Figure 5a – Normalized axial pulse/echo response using full wave rectified peak for 

a circular disk transducer with D/λ = 10 and different bandwidths 



     
 

Figure 5b – Isometric view of normalized transverse pulse/echo response versus 

axial position using full wave rectified peak for a circular disk transducer with  

D/λ = 10 and BW = 80% 

               

Note the comparison between Figure 5b and Figure 4a (the CW axial pulse/echo profile). 

The location of the last maximum also shifts from N = r
2
/λ0 at 20% bandwidth to about 

1.2 N at 120% bandwidth. Figure 5b shows pulse/echo bandwidth of a transducer with 

D/λ0 = 10 and 80% bandwidth using full-wave rectified peak detection. A comparison 

with the similar presentation of a single-frequency pulse/echo profile (Figure 4b) shows 

several differences. The most striking difference occurs in the near field, where the 

pulse/echo response is much more uniform. Although near field response differences tend 

to decrease with increasing bandwidth, there is minimal improvement at bandwidths 

above 80%. The origin of the smoothing is the combined effect of many frequency 

components, hence wavelengths, in the transmitted pulse. The exact value of the 

pulse/echo response at a given point in the sound field will depend not only on bandwidth, 

but also on the shape of the spectrum, and hence the energy level associated with each 

frequency component. However the effect of the broadband transmitted pulse is to smear 

characteristic features of the single frequency response map, so that there are no longer 

any nulls present. 

 

From this it can be easily recognized that transducer as well as instrument bandwidth can 

have a significant effect on attempts to estimate the size of small flaws within the near 

field from signal amplitude and distance or depth.  

 

 

III. Focusing Effects 

 

Focused transducers represent an important class of transducer assemblies. They 

concentrate sound energy into a spot whose diameter is smaller than that of the unfocused 

beam from a transducer element of the same frequency and diameter, and their 

importance lies in the dramatically increased echo amplitudes that can be achieved when 

search for small defects within the focal zone and better definition of the beam for 

characterizing or sizing large flaws. They also offer better sound coupling into sharply 

curved test pieces like small diameter tubing and bars. Focused transducers are widely 



used in immersion testing for improving the detectability of small flaws as well as for 

curved surface coupling. Focused transducers are also available for angle beam and delay 

line contact testing.  This section is devoted to defining the focal characteristics of 

transducer assemblies in pulse/echo testing and the relationships controlling them. The 

theory is based on single frequency or long pulse operation. Modifications introduced by 

bandwidth are mentioned in the text. Figure 6 illustrates the geometry of a typical 

focused transducer using a refracting lens and a curved radiating surface. 

  
 

Figure 6 – Notation of parameters of focused transducer assemblies 

 

Focal Length: The focal length of a transducer assembly is defined as the distance from 

the radiating surface to the point on the acoustic axis where maximum pulse/echo 

response from a point reflector like a small ball target occurs. The focal length of 

pulse/echo transducers is normally measured as the axial distance (Z) between the 

radiating surface and a defined reflector or target at which the amplitude of reflection 

signal is maximum. The focal length measured in this way will be significantly 

influenced by the reflector geometry, typically a small ball target versus a flat plate. The 

term for focal length is ZF. 

 

Normalised Focusing Length or Focusing Factor: In discussing the focusing 

characteristics of ultrasonic transducer it is often helpful to express the focal length as a 

percentage of the near field length. The normalized focal length SF, sometimes called the 

focusing factor, is the actual focal length ZF divided by the near field length. 

 

  SF  =   ZF  / N   =  ZF ( λ / r
2
 )    (24) 

 

For point target or small ball reflectors, SF  ≤ 1.
(14) 

 

For flat plate reflectors, SF  ≤ 1.18. 
(15) 

 

Point Target Focus: The focal length of a transducer assembly has been defined as the 

distance from the radiating surface to the point of maximum on-axis pulse/echo response. 

All transducers, whether focused or unfocused, produce such a maximum. (In the case of 

unfocused transducers, that maximum occurs at N.) Restricting consideration to the case 

of a circular transducer, Figure 6 shows the relationship between the radius of a 

spherically contoured transducer element and the normalized focal length SF. For a 



spherically contoured transducer element, REFF  equals the radius of curvature. In the 

more common case of transducers with a refracting epoxy lens, REFF is calculated as 

follows: 

   REFF  =  RL  /  1 – n    (25) 

 

Where RL is the actual lens radius and n is the refractive index c2 / c1  where c2 is the 

velocity of sound in water and c1 is the velocity of sound in the lens.
(16) 

 
 
Figure 7 – Lens radius of spherically radiused circular transducer versus equivalent 

normalized focal length 

 

In figure 7 the radius REFF is plotted in units of near field distance N. The straight line 

labeled “optical case” simply shows the relationship that should exist if the behavior of 

acoustic lenses was controlled by optical laws rather than diffraction. The curve labeled 

REFF is the actual relationship. This curve is calculated from the expression published by 

Wustenberg 
(17) 
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This curves shows, for example, that in order to produce a focus as measured by the 

maximum amplitude echo from a small ball target at  SF = 0.6, the REFF would have to be 

equal to N. As REFF approaches infinity, the normalized focal length approaches 1. 

 

Flat Plate Focus: Although the true pulse/echo focal length is best measured using a ball 

target, the flat plate maximum response is often easier to measure, and has significance in 

applications where plane boundaries are measured as in many thickness gaging 

applications. Further, the flat plate focus us approximately related to the ball target focus. 



 
 

Figure 8 -- Lens radius of spherically radiused circular transducer versus equivalent 

flat plate normalized focal length 

 

Figure 8 relates the effective radius of curvature to the normalized flat plate focus. The 

flat plate focus is defined as the distance at which the maximum echo amplitude is 

observed. The flat plate focus approaches SF  = 1.18 as REFF approaches infinity (flat 

transducer), and as the flat plate focus approaches this limit the peak becomes very broad 

and very weak. The increase in signal amplitude at the peak is only about 0.3 dB for a flat 

transducer
(5)

. Therefore, for higher frequency transducers with large values of N, the peak 

in the flat plate echo amplitude may not be observed, especially if measured in water due 

to the offsetting effect of attenuation with increasing distance. 

 

It is useful to have a relationship between the point target focus and the flat plate focus of 

a focused transducer. Figure 9 should an experimentally obtained curve of the ratio of 

point target focus to flat plate focus versus the effective radius of curvature. At very sharp 

focuses (REFF  ≤ 0.1 N) there is practically no difference between the point target focus 

and the flat plate focus. As the focus becomes weaker, the ratio of point target focus to 

flat plate focus decreases to a minimum value of about 0.66 at REFF  = 1.2 N. The ratio 

begins to increase again, approaching a value of 0.85 as REFF approaches infinity. The 

importance of this curve is that it allows conversion of point target focal length to flat 

plate focal length and vice versa for any focused transducer assembly. 

 
Figure 9 – Ratio of true focus to flat plate versus radius of equivalent spherically 

radiused circular transducer 



 

Focal Zone: The focal zone of a focused transducer is defined as the distance between the 

on-axis points at which the pulse/echo signal amplitude drops to 50% (-6 dB) of the 

maximum amplitude at the focal point. The focal zone FZ, as drawn in Figure 10, is 

given by Wustenberg
(17)

 as
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Figure 10 – Axial and transverse parameters of a focused sound beam 

 

Wustenberg also gives the length of the part of the focal zone ∆FZ located on the near 

side of the focal point as  

 

  ∆FZ   =  
4

FZ
  [ 1 + (1 - SF )

2
 ]    (28) 

 

It is possible to normalize the focal zone as well as the -6 dB beginning and ending points 

of the focal zone (SB and SE  of Figure 9) in terms of N: 

 

  
N

FZ
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 
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N

FZ∆
  =  

4

N/FZ
 [ 1 + (1 - SF )

2
 ]    (30) 

 

  SB   =   SF   - 
N

FZ∆
      (31) 

 

  SE  =  SF   + 
N

FZ
 - 

N

FZ∆
  =   SB    +  

N

FZ
   (32) 

 

Figure 11 shows the relationship between the -6 dB focal zone expressed in terms of N, 

the near field length, and the normalized focal length as calculated from Wustenberg’s 

equations. Figure 10 shows that the beginning of the focal zone is always closer to the 

focal point than the ending point. Both Figures 11 and 12 predict results that would be 



obtained by measuring the echo amplitude from a small ball reflector using long RF 

excitation pulses. 

 

                                             
 

Figure 11 – Focal zone of focused   Figure 12 – Normalized beginning 

Transducer assemblies versus   and ending points of the -6dB focal 

normalized focal length    Zone as measured by amplitude of  

       signal from small ball target 

 

Effect of Focusing on Sensitivity: One of the major reasons for using focused transducer 

assemblies is to achieve increased pulse/echo signal amplitude from small on-axis targets 

such as cracks, voids, or inclusions. Kossoff
(18)

 provides an expression for the on-axis 

sound intensity as a function of distance from the transducer. Relative differences in 

radiated sound intensity are equivalent to relative differences in echo amplitude. 
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As Z approaches REFF, equation 33 reduces to  

 

 I  =  



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 π

EFFR2
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(34) 

 

Kossoff’s equation has been evaluated to determine the relative maximum on-axis echo 

amplitude and the points at which the on-axis echo amplitude drops -6 dB from that 

maximum. Figure 13 shows the increase in echo amplitude that can be expected from 

small on-axis targets at the acoustic focus as a function of the normalized focal length SF. 

Relative to an unfocused transducer, an increase in echo amplitude of 100x or 40 dB is 

achievable with an SF of 0.15. However, as seen from Figure 11, under that condition the 

focal zone is very short, so the gain in amplitude is achieved only over a relatively small 

range. The -6 dB focal zone obtained from Kossoff’s equation agrees very well with 

Wustenberg’s calculation, as shown in Figure 12.  

 



          
 

Figure 13 – Increase in on-axis pulse/echo sensitivity versus normalized focal length 

 

Degree of Focusing: Literature often describes focusing as strong, medium or weak, but 

frequently there is no further definition as to what these terms mean. Schengermann
(13)

 

has proposed that degree of focusing be classified as follows: 

 

 Weak focusing        .66 < SF  ≤1 

 Medium focusing    .33 < SF  ≤.66 

 Strong focusing          0 < SF  ≤.33 

 

Kossoff
(18)

 suggests the following: 

 

 Weak focusing          .4 < SF  ≤1 

 Medium focusing    .15 < SF  ≤.4 

 Strong focusing          0 < SF  ≤.15 

 

Kossoff’s classifications are based on the increase in on-axis sound intensity achieved 

relative to a flat transducer. For weak focusing, a gain in sound intensity or echo 

amplitude of 10x can be realized at SF  = 0.4, while the gain is 100x at SF  = 0.15. 

Notwithstanding the logic of Kossoff’s proposal, Schlengermann’s classifications better 

fit actual practice. It is quite rare for transducers designed for ultrasonic NDT 

applications to have normalized focal lengths SF less than 0.15. 

 

Beam Width: Beam width is defined as the transverse distance between two points at a 

specified distance from the transducer where the pulse/echo signal amplitude from a 

small ball target reflector drops by a specified amount from the maximum on-axis 

amplitude. Usually the beam width is specified at the -6 dB or half peak amplitude level 

of a pulse/echo signal. This is equal to a -3 dB or .707 drop in transmitted pressure as it 

would be measured with a small hydrophone. 

 

Beam width at the focus of a circular disk transducer can be calculated from the 

normalized focal length and the diameter of the transducer, or alternately from the focal 

length, wavelength in the test material, and element diameter: 



 BW-6 dB  =  0.2568D SF   =  1.028 
D

ZFλ
    (35) 

 

 BW-20 dB  =  0.435D SF   =  1.74 
D

ZFλ
    (36) 

 

where  D = element diameter and  ZF   =  focal length. The pulse/echo beam widths as 

defined above are calculated from the beam angle equations found in the Beam Spreading 

section. 

 

Kossoff gives an equation that described a beam width that he finds closely corresponds 

to that measured for moderately damped transducers at – 20 dB echo amplitude relative 

to the on-axis peak as a function of distance: 

 

 BW-20 dB  =  

KZ2

N
sinK

D96.0

π
      (37) 

 

Kossoff finds this relationship to hold over the range of Z where the axial intensity or on-

axis echo amplitude at least 20% of its value at the focus. It will be noted that at the 

acoustic focus the -20 dB width as predicted by Kossoff’s equation is much larger than 

calculated for single frequency operation. The correspondence between equation 37 and 

experimental results using moderately broadbanded transducers is probably due to the 

effects of bandwidth. 

 

The -6 dB beam width is often used for comparison of performance. Restated for -6 dB, 

Kossoff’s equation becomes: 

 

 BW-6 dB  =  

KZ2

N
sinK

D403.0

π
      (38) 

This is strictly valid only for CW or long pulse operation, but comparison of the results of 

equation 38 with experimental measurements are in relatively good agreement for 

transducers with bandwidths of up to 60%. Experimentally, it has been noted that at 

distances within the near -6 dB range (axially) from the focus, the beam width is smaller 

than predicted by equation 38 , falling between the beam width at the focus and the 

beamwidth predicted by the equation. For transducers with greater bandwith, these 

equations based on single frequency CW excitation become progressively less exact. 

 

Focal Length Variation Due to Acoustic Velocity of Test Material: The measured focal 

length of a transducer is dependent on the medium in which it is being measured, due to 

the fact that different materials have different sound velocities. Transducer focal lengths 

are typically specified for water. Since most test materials have a higher sound velocity 

than water, the focal length is effectively shortened. This effect is caused by refraction 

and is illustrated in Figure 14. 



 
 

Figure 14 – Focal length variation due to material velocity 

 

This change in focal length can be calculated with equation 39. Given a particular focal 

length and material path, it can be used to determine the appropriate water path with 

respect to the shortened focus in the test material. 

 

 WP = F – MP (ctm / cw )      (39) 

 

 where WP = one-way water path length 

  MP = one-way sound path to focus in material 

  F =  focal length in water 

  ctm  = sound velocity in the test material 

  cw  = sound velocity in water 

 

 

IV. Attenuation Effects 

 

 

Attenuation is a function of frequency. The measured focal characteristics of broadband 

transducer assemblies with a high center frequency and/or long focal length may deviate 

from the expected performance due to the effect of frequency dependent attenuation in 

water, which effectively shifts the transducer’s frequency spectrum downward by more 

strongly attenuating its higher frequency components. This frequency downshift also 

shortens the measured focal length of focused high frequency immersion transducers. 

Attenuation is observed as the decrease in measured signal amplitude with increasing 

propagation in the sound transmitting medium. Neglecting other losses such as beam 

spreading and diffraction, attenuation can be expressed as an exponential equation of the 

form: 

 

 A  =    Zf

0

n

eA α−               (39) 

 

where Z  =  propagation distance in cm 

 f   =  frequency in Hertz 

 n  =  exponent of frequency dependence 



 α  =  frequency dependent amplitude attenuation coefficient of the medium in  

  Nepers/cm/Hz
n 

 A0  =  unattenuated amplitude 

 A  =  attenuated amplitude 

 

Attenuation in terms of dB/cm at a specific frequency is obtained from 

  

 dB/cm  =  -8.6859 αf
n 

 

For water, the exponent of frequency dependence is n = 2. 

 

The frequency dependence of attenuation has important consequences for the spectrum of 

a propagating wave. The higher frequencies are disproportionately attenuated, causing the 

spectrum peak frequency to shift downward with increasing propagation distance. An 

approximately expression for the downshifted peak frequency where the exponent of 

frequency dependence is 2 as in water, is given by Ophir and Jaeger
(19)

. 

 

 Fpeak  =  
1Z2

f
2

0

+σα
       (40) 

 

where     f0     =  unattenuated peak frequency 

     α     =  amplitude attenuation coefficient Nepers/cm/Hz
2
 

     Z     = propagation distance in cm 

     σ     =  (f0) (%BW) / 236 

 %BW  =  percent bandwidth (-6 dB) of the unattenuated spectrum 

 

This effect is quite significant at higher frequencies and longer water paths. An equation 

that calculates the round trip water path length that causes a 5% peak frequency 

downshift in water is: 

 

 Z  =  
22

0 )BW(%F

68.1465

α
       (41) 

 

Table 1 that follows has been calculated in this manner. It shows the total (round trip) 

water path length that would be expected to produce a 5% downshift in peak frequency 

for transducers of various bandwidths and unattenuated peak frequencies. 

 

 

 

 

 

 

 

 

 



Table 1 – Guideline for Total Maximum Water Path (millimeters) 

 

Maximum total water path, with respect to frequency and bandwidth, producing 

frequency downshift no greater than 5%. Note that for pulse/echo testing, these numbers 

must be divided by two to obtain the distance between the transducer and the test piece. 

 

 

MHz      

BW 

30% 

 

40% 

 

50% 

 

60% 

 

70% 

 

80% 

 

90% 

 

100% 

2.25 -- -- -- -- -- -- -- -- 

3.5 -- -- -- -- 660 510 405 330 

5.0 -- -- 635 430 330 255 175 150 

7.5 -- 430 280 175 125 100 75 50 

10.0 430 255 150 100 75 50 25 25 

15.0 175 100 50 25 25 25 29 18 

20.0 100 50 25 25 20 15 10 10 

25.0 50 25 25 18 12 10 7.5 5 

30.0 25 25 18 10 7.5 5 5 2.5 

40.0 25 15 10 5 5 2.5 2.5 2.5 

50.0 18 10 5 2.5 2.5 2.5 1.8 1.5 

 

The notation  “- -“   indicates a water path greater than 750 mm.  

 

This table uses an attenuation coefficient α for water of -3.12 times 10
-3

db/cm/MHz
2
.  

Notice that as bandwidth increases at a given frequency, the permissible water path 

decreases. If the combination of center frequency, bandwidth, and water path as 

determined by focal length and test requirements are beyond the limits indicated in Table 

1, it may be possible to use a shorter focal length to permit a shorter water path. At the 

same time, it is clear that water path attenuation effects significantly limit water path 

length at higher test frequencies. 
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