

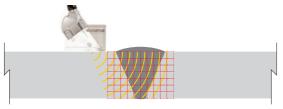
Контроль сварных соединений

Ультразвуковые методы контроля сварных соединений

- Экспресс-сканирование сварных швов
- Мгновенные результаты
- Отсутствие вредных факторов и необходимости очистки зоны контроля (как при РК)
- Соответствие стандартам
- Хранение данных
- Минимальные простои

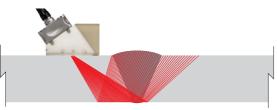
Ультразвуковые методы контроля сварных соединений

Дефектоскоп OmniScan™ обеспечивает надежный и эффективный контроль качества сварных соединений фазированными решетками, представляя отличную альтернативу радиографическому методу. Доступные по цене решения УЗК Оlympus позволяют выполнять контроль сварных соединений в соответствии с международными нормами и учетом производственных потребностей. Предлагаемые Olympus портативные и простые в использовании устройства сбора данных, сканеры, кодировщики и программное обеспечение могут быть использованы практически в любых условиях. Интуитивное программное обеспечение значительно упрощает процесс контроля и повышает производительность.


Данные решения Olympus также применяются для контроля сварных швов, выполненных из углеродистой стали или коррозионно-устойчивого сплава (например, аустенитного).

Преимущества:

- Экспресс-контроль сварных соединений различных диаметров, материалов и толщины
- 100%-ый охват зоны сварного шва


- Контроль стыковых соединений, кольцевых сварных швов, длинных сварных швов, сварных соединений с односторонним доступом и других типичных профилей сварных швов
- Портативный; используется как внутри помещений, так и в полевых условиях

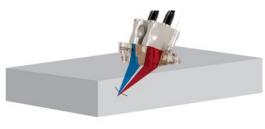
Комбинация различных методов для эффективного сканирования всей зоны сварного шва

Метод полноматричного захвата (FMC)/Метод общей фокусировки (TFM) FMC – это процесс сбора данных, где каждый элемент ФР-ПЭП возбуждается

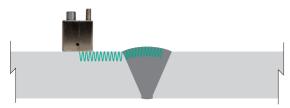
FMC – это процесс сбора данных, где каждый элемент ФР-ПЭП возбуждается последовательно, и все элементы используются в качестве приемников для каждого передаваемого импульса. TFM обрабатывает и реконструирует данные FMC, так чтобы сигналы были синтетически сфокусированы в каждой точке зоны.

Технология УЗК ФР в режиме Импульс-эхо

Элементы многоэлементного ПЭП возбуждаются с использованием разных временных задержек (законов фокуса), электронным образом направляя лучи под разными углами и фокусируя их на определенной глубине.


Традиционный УЗК в режиме Импульс-эхо

Одноэлементный преобразователь используется для генерации акустического пучка под фиксированным углом. Эхо-сигнал принимается тем же преобразователем и интерпретируется прибором.


Дифракционно-временной метод контроля (TOFD)

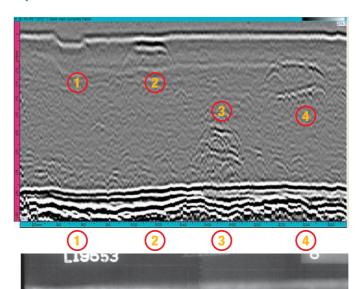
Одноэлементный преобразователь отправляет ультразвук в объект контроля, а второй ПЭП принимает дифрагированные сигналы, сгенерированные дефектами.

Контроль продольными волнами приема-передачи (TRL)

Отдельные излучающие и принимающие ПЭП генерируют преломленную продольную волну. Раздельно-совмещенные ФР-преобразователи (DLA/DMA) позволяют сохранять хорошее отношение сигнал-шум (ОСШ) в приложениях, требующих более высокого усиления.

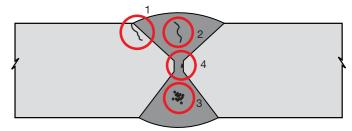
Контроль поверхностными волнами

Когда ультразвуковые лучи падают на поверхность объекта под большим углом, часть энергии проходит около поверхности, позволяя обнаруживать мелкие дефекты.


Ультразвуковой контроль (УЗК), как замена радиографическому контролю (РК)

Ультразвуковой метод очень эффективен для контроля сварных соединений резервуаров, труб, сосудов высокого давления, и т.п. Решения Оlympus в области УЗК отвечают требованиям ASME, API и других стандартов радиографического контроля (полный набор исходных данных и использование кодировщика). Ультразвуковые решения Оlympus имеют множество преимуществ перед радиографическим методом:

- Отсутствие радиоактивных веществ
- Отсутствие необходимости ограждения рабочей зоны
- Архивация данных контроля в режиме реального времени
- Отсутствие необходимости архивирования рентгеновских снимков


- Улучшенная производительность
- Улучшенная вероятность обнаружения (POD)

Сравнение показаний

Анализ результатов контроля УЗК и РК показывает, что ультразвуковой метод наиболее чувствителен к плоскостным дефектам и предоставляет информацию о протяженности и глубине залегания дефектов.

Возможности измерений

ID	Тип дефекта	АУЗК	Радиографический контроль (РК)
1	Внешняя продольн. трещина	Положение X, Y и Z Протяженность дефекта Высота дефекта	Положение X и Y Протяженность дефекта
2	Продольная трещина	Положение X, Y и Z Протяженность дефекта Высота дефекта	Не обнаруж.
3	Пористость	Положение X, Y и Z Протяженность дефекта	Положение X и Y Протяженность дефекта
4	Неполное проплавление в корне шва	Положение X, Y и Z Протяженность дефекта Высота дефекта	Положение X и Y Протяженность дефекта

Преимущества решений УЗК Olympus

	Решения УЗК Olympus	Радиографический контроль (РК)
Отсутствие радиоактивных веществ	Да	Нет
Отсутствие закрытых (ограниченных) зон	Да	Нет
Простота использования на местности	Да	Нет
Вероятность обнаружения (POD) (плоских дефектов, таких как трещины и непровары)	Очень хорошая	Слабая
Скорость обработки данных	Очень хорошая	Хорошая
Измерение глубины	Высокая точность	Слабая
Измерение длины	Высокая точность	Достаточная точность

Трубы малого диаметра

Ручной сканер COBRA™, в комбинации с дефектоскопом OmniScan™ на фазированных решетках, используется для контроля кольцевых сварных швов на трубах малого диаметра. На сканере COBRA может быть установлено два ФРпреобразователя для контроля труб с НД от 21 до 114 мм.

Компактный дизайн сканера позволяет проводить контроль труб в ограниченных пространствах при минимальном запасе высоты. Смежные конструкции, трубы и опоры могут располагаться на расстоянии 12 мм.

Сканер имеет многозвенную конструкцию для быстрой адаптации к любому диаметру трубы (просто добавьте или снимите некоторые звенья). Кроме того, подпружиненный механизм фиксации позволяет сканеру плотно прилегать к поверхности трубы. Данная конструкция позволяет выполнять комплексный контроль при установке сканера с одной стороны труб, когда двухсторонний доступ невозможен.

Отличительной особенностью сканера COBRA является легкое и плавное перемещение кодировщика, обеспечивающее сбор достоверных данных. Сканер COBRA обеспечивает стабильное и сильное давление, а следовательно, хороший УЗ-сигнал и точность кодирования по всей окружности трубы.

Сканер COBRA на трубе (диам. 21 мм) с двумя ФР-ПЭП А15 и дефектоскоп OmniScan X3. Экран OmniScan отображает две группы ФР (РА) с секторными сканами и С-сканами.

Приложения

Бойлерные трубы

 Технологические трубопроводы малого диаметра

Аустенитные сплавы

Методы сканирования

Двухсторонний контроль

Сканер СОВRА™, в сочетании с дефектоскопами OmniScan™ MX2 и X3, может использоваться для двухстороннего контроля сварного шва за один проход, что значительно увеличивает производительность. В данном случае, сканер удерживает два ФР-ПЭП, располагаемых с двух сторон сварного шва; расстояние между ПЭП регулируется в зависимости от толщины сварного шва.

Односторонний контроль

При контроле сварных стыковых соединений трубопровода, конфигурация сканера может быть изменена для одностороннего контроля с использованием одного преобразователя.

Компания Olympus также предоставляет более доступный комплект COBRA, используемый с одногруппным OmniScan SX. В данной комплектации, контроль сварного шва выполняется за два прохода.

Методики контроля

Данное решение Olympus на фазированных решетках использует низкопрофильные ФР-ПЭП с оптимизированной вертикальной фокусировкой для улучшения обнаружения мелких дефектов в тонкостенных трубах. Специально сконструированные низкопрофильные призмы подходят для любого диаметра труб в указанном диапазоне.

Раздельно-совмещенный линейный ФР-ПЭП (DLA)* A25 предназначен для контроля аустенитных сплавов, которые невозможно проверить с помощью преобразователя A15 в режиме импульс-эхо. Инновационная технология преобразователя A25 позволяет оптимизировать обе решетки под угол скоса призмы. Последний оптимизируется с учетом диаметра контролируемой трубы.

Сканер COBRA совместим с традиционными УЗ-ПЭП (диаметр элемента 3 мм) и специальной призмой для контроля методом TOFD*.

^{*}При использовании преобразователей TOFD и DLA высота зазора увеличивается.

Трубы и пластины

Универсальное решение Olympus использует несколько методов для контроля качества сварных соединений пластин и труб диаметром от 114,3 мм: фазированные решетки, дифракция времени пролета, традиционный ультразвук. Эти методы используются по отдельности или вместе для обеспечения полного охвата сканирования и высокой вероятности обнаружения.

Решение Olympus также включает разные методы сканирования для точного определения положения и размера дефектов. Возможность кодирования и устойчивость сканеров обеспечивают высокое качество данных и выполнение контроля в соответствии с требованиями международных стандартов. Для ручного, кодированного, полуавтоматического и автоматического сбора данных используются разные сканеры.

Решение Olympus для контроля качества сварных швов конструкций из углеродистой стали включает: устройства сбора данных, сканеры, преобразователи и программное обеспечение. С помощью данного решения можно определить протяженность и глубину залегания дефектов.

Призмы с фокусировкой по пассивной оси (PAF)

Запатентованная серия фокусирующих призм Olympus позволяет компенсировать расходимость луча в пассивном направлении при контроле кольцевых сварных швов трубы. Малая ширина луча позволяет измерять небольшие дефекты по оси сканирования, снижая процент отбраковки. Также, ввиду фокусирования электронного пучка, улучшено отношение сигнал-шум (ОСШ) и, соответственно, четкость изображений дефектов.

Фазированные ПЭП и призмы для контроля качества сварных швов

Фазированные призмы и преобразователи АЗ1 и АЗ2 отличаются высоким уровнем производительности.

- Улучшенное отношение сигнал-шум (ОСШ)
- Эргономичный дизайн
- Улучшенный акустический контакт
- Применимы для комбинированного сканирования

Контроль при высоких температурах

Термостойкая призма совместима с ФР-преобразователями АЗ1 и АЗ2 и кодировщиком Mini-Wheel™ Olympus (доступна по запросу). Данная призма позволяет выполнять контроль изделий с температурой поверхности до 150°C).

Методы сканирования

Решение Olympus для контроля сварных соединений объектов из углеродистой стали поддерживает разные методы сканирования.


Ручной и с применением кодировщика

Ручное сканирование сварного шва с использованием одного ФР-преобразователя, и возможным подключением кодировщика Mini-Wheel™ или ручного сканера VersaMOUSE™.

Автоматизированный

Сканер WeldROVER™ Olympus – оптимальное решение для автоматического сканирования сварных швов изделий из углеродистой стали с использованием одной пары ФР-ПЭП и до трех пар преобразователей TOFD. Данный сканер обеспечивает быстроту и точность результатов, благодаря устойчивому положению и скорости перемещения ПЭП.

Полуавтоматизированный

Сканер HST-Lite используется для контроля качества сварных швов с использованием одной пары TOFD-преобразователей.

Сканер HSMT-Compact™ предназначен для контроля качества сварных швов с использованием одной пары ФР-ПЭП и одной пары ТОFD-ПЭП.

Сканер HSMT-Flex[™] используется для контроля качества сварных швов с использованием одной пары ФР-ПЭП и до трех пар ТОГО-ПЭП.

ChainSCANNER™ крепится к трубе с помощью звеньев цепи, что позволяет использовать его на неферромагнитных материалах.

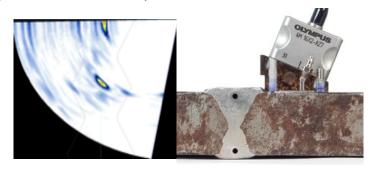
Методики контроля

Технология фазированных решеток позволяет электронным способом генерировать различные углы отклонения луча, тип луча и смещения луча. Это обеспечивает максимальную гибкость сканирования и быструю адаптацию к различным типам сварных швов.

Традиционный ультразвуковой контроль (УЗК) может быть альтернативой фазированным решеткам, когда требуется высокая скорость сканирования при минимальных затратах.

Метод TOFD может использоваться как отдельно, так и в качестве дополнения к эхо-импульсному методу.

Комбинация фазированных решеток и метода TOFD – оптимальный вариант для контроля большинства сварных конструкций из углеродистой стали.


Эти две методики дополняют друг друга, обеспечивая превосходное качество изображения, наилучшую вероятность обнаружения и точное определение параметров дефектов.

Приложения

- ✓ Контроль сварных соединений в
- ✓ Резервуары и трубы высокого
- ✓ Сварные соединения стальных
- ✓ Строительство башен ветрогенераторов

процессе эксплуатации

Аустенитные, никелевые и другие крупнозернистые сплавы влияют на скорость распространения ультразвука в материале, вызывая искажение УЗ пучка, его рассеяние, преобразование типов волн и, таким образом, повышенное затухание ультразвука, – все это обусловливает плохое отношение сигнал-шум (ОСШ) по сравнению с контролем поперечными волнами в низколегированных углеродистых сталях. Для контроля таких материалов используются раздельносовмещенные ФР-ПЭП со специальными призмами TRL (контроль продольными волнами приема-передачи),

которые спроектированы с акустической изоляцией УЗ пучка излучателя и приемника для улучшения ОСШ и устранения эхо-сигналов от призм. Раздельно-совмещенные матричные ФР-ПЭП (DMA/DLA) Olympus используются со съемными призмами, позволяя комбинировать различные технологии, такие как: раздельно-совмещенная схема для продольных волн, эхо-метод для поверхностных волн, самотандем и др. в одной группе секторного сканирования ФР.

Раздельно-совмещенные матричные ФР-ПЭП (DMA/DLA)

Р-С матричные преобразователи состоят из двух ФР-ПЭП, подключенных к одному разъему. Это могут быть матричные или линейные решетки. Один преобразователь выполняет секторное сканирование, а второй преобразователь принимает отраженные от дефекта эхо-сигналы.

	A25	A26	A27
Частота	5 МГц	2,25 и 4 МГц	4 МГц
Конфигурация	Р-С ПЭП 16 линейн.	Р-С ПЭП 32 линейн.	Р-С ПЭП 32 (16 × 2) матрич.
Апертура ПЭП	12 мм × 5 мм	32 MM × 12 MM	16 × 6 MM
Призмы	SA25-DN70L-IH	SA26-DN55L-FD40-IHC	SA27-DN55L-FD15-IHC
Характеристики	Совместим. со сканером СОВРА® для контроля труб малого диаметра	Оптимизирован для толстых материалов	ПЭП общего назначения с превосходными рабочими характеристиками и оптимальным приповерхностным разрешением

Программные средства настройки

Настройки для стандартных преобразователей DMA/DLA и призм можно создать в программном обеспечении NDT SetupBuilder и импортировать в $OmniScan^{™}$ SX или MX2 (с возможностью приема-передачи), или напрямую в дефектоскопе OmniScan X3.

Приложения

Аустенитные сплавы

Никелевые сплавы

Плакированные металлы

 Сварные соединения разнородных металлов

www.olympus-ims.com

Компания OLYMPUS SCIENTIFIC SOLUTIONS AMERICAS CORP. сертифицирована по ISO 9001, ISO 14001 и OHSAS 18001. Все характеристики могут быть изменены без предварительного уведомления. Названия продуктов выялются товарьным знаками или зарегистированным товарымым знаками или зарегистированным товарымым знаками

соответствующих компаний. Все права принадлежат компании Olympus © 2020

OLYMPUS EUROPA SE & CO. KG Wendenstraße 14-18, 20097 Hamburg, Германия, Tel.: (49) 40-23773-0 OLYMPUS MOSCOW LIMITED LIABILITY COMPANY

«Олимпас Москва» 107023, Москва, ул. Электрозаводская, д. 27, стр. 8. тел.: 7(495) 956-66-91